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A comprehensive analysis of the soliton interaction near the zero-dispersion wavelength when higher-
order dispersion comes into the play is presented. It is shown that the interaction process depends criti-
cally on the existence of the resonance radiation because that radiation cannot be separated from the sol-
iton in time. We propose to exploit a proper phase modulation to stabilize the positions and the ampli-
tudes of a soliton train provided that third-order dispersion is weak and no resonance radiation occurs.
Moreover, we show that the resonance radiation may be absorbed by a bandwidth-limited amplifier re-
gardless of the bandwidth. Thus, an appreciable stabilization of the pulse separation as well as the am-
plitudes can be achieved. The applicability of a convenient first-order perturbation approach to describe
correctly the evolution of pulses near the zero-dispersion wavelength is studied in detail.

PACS number(s): 42.81.Dp

I. INTRODUCTION

It is now a common belief that optical solitons, that
may exist in fused silica fibers beyond the zero-dispersion
wavelength (ZDW), will play an important role as infor-
mation carriers in future high-speed communication sys-
tems. The fundamental mechanism of soliton formation,
namely, the balanced interplay of linear group velocity
dispersion (henceforth termed as dispersion) and non-
linearily induced self-phase modulation, is well under-
stood [1,2]. What makes solitons particularly attractive
for applications in transmission lines is their remarkable
robustness [3]. The major reason for that robustness is
that the wave numbers of the solitons are separated from
those of the dispersive waves. Therefore, linear waves
cannot be in resonance with the soliton, and energy can-
not be exchanged provided that no perturbation with just
that relevant wave number acts [4,5].

Since the early days of the experimental investigation
of optical solitons the reduction of the power needed to
create a fundamental soliton has been a pivotal question.
This power is directly proportional to the dispersion. Be-
cause of the large dispersion of standard fibers at the
wavelength of minimal losses (A=1.55 pm) an evident
idea for power reduction was a shift of the operational
wavelength towards the ZDW [6-8] which is A=1.31
pm. In doing so an additional term in expanding the
wave number of the fiber mode k(w) around the central
frequency wg,, namely, the third-order dispersion (TOD)
term, had to be taken into account. Hence, there was a
certain interest in understanding the effect of TOD on the
existence and stability of the soliton [5,9-17]. Because
the then relevant modified nonlinear Schrédinger equa-
tion (NLSE) is not integrable perturbation or numerical
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methods had to be applied. It was discovered that the
pulses (or solitary waves) near the ZDW have a soliton-_
like shape, but radiate continuously [7]. It was shown
that this radiation consists of different spectral com-
ponents [14,17] where the most prominent is called reso-
nance radiation. This resonance radiation is created
beyond a certain threshold of TOD and radiates into the
normal dispersion regime where the spectral shift is in-
versely proportional to TOD [7,11]. Because of the con-
servation of momentum (or the spectral center of mass)
the pulse is shifted further into the anomalous dispersion
regime and generates its own dispersion [5,11]. Below
the threshold the solitary wave behaves similar to a
Schrodinger soliton where the TOD presents an nonsym-
metric perturbation to the NLSE and evokes a nonzero
velocity [6,18], i.e., the soliton slows down. Moreover,
very early it was proposed to use propagation near the
ZDW to reduce the soliton interaction [19] that may
eventually lead to the coalescence of two solitons. The
reason for this reduction is the decay of the two-soliton
bound state into two individual solitons of unequal ampli-
tude and velocity [20]. Due to the introduction of
dispersion-shifted and flattened fibers as well as erbium-
doped fiber amplifiers some years ago the main interest in
soliton transmission has clearly turned to the 1.55 um re-
gion where TOD may be neglected provided that pi-
cosecond pulses are used.

But, very recently a renewed interest in studying the
effects evoked by TOD has been emerging, having essen-
tially three reasons. Firstly, the improvement of the per-
formance of praseodymium-doped fiber [21] and semicon-
ductor amplifiers that operate around 1.3 um makes this
wavelength regime an interesting alternative. Secondly,
the use of femtosecond pulses which are generated rou-
tinely nowadays may require the inclusion of TOD effects
together with self-steepening and intrapulse Raman
scattering [22]. Last but not least, the modeling of pulse
generation in different types of mode-locked lasers has
shown that TOD plays a prominent role [23,24].

Because the effect of TOD on single soliton propaga-
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tion is essentially understood [5,12-18] the main interest
is focused on a fundamental understanding of soliton in-
teraction when TOD comes into the play. It is well ap-
preciated that, besides the Gordon-Haus jitter [25] and
acoustic effects [26], the soliton interaction significantly
contributes to the limitation of the capacity of future
transmission lines. Hence, many proposals, e.g., as
bandwidth-limited amplification [27,28], the introduction
of sliding filters [29], nonlinear amplification [30], the
usage of out-of-phase solitons [31,32], and phase modula-
tion [33-36], have been made to reduce the soliton in-
teraction and to stabilize their propagation. Apart from a
few papers [37-39] these investigations are restricted to
those wavelengths and/or pulse widths where TOD can
be disregarded. Among other things the combined effect
of a weak TOD, phase modulation and bandwidth limited
amplification on single soliton propagation was analyzed
recently [40]. Hence, it might be interesting to study the
soliton interaction systematically in the presence of TOD
as it depends on various initial conditions (separation,
phase, amplitude) as well as on the effects listed above.

As long as TOD is weak, where this remains to be
specified by deriving the corresponding pulse data, one
can expect that the Schrodinger solitons keep their very
identity (no resonant radiation) and acquire only a non-
vanishing velocity. This effect might be used to separate
the solitons in the time domain from the radiation [41],
generated by the excess gain of the amplifiers and TOD,
in order to avoid soliton instability [30,42]. Moreover,
one can expect that perturbation approaches that use
Schrdodinger solitons as trial functions, e.g., the
Karpman-Solov’ev approach (KSA) [43], will yield a
reasonable description of the interaction process because
only minor radiation is created by TOD.

Although one attempts usually to keep the TOD
within this limit it might sometimes be necessary to in-
crease it to get, e.g., a velocity that is sufficiently large to
separate solitons and amplifier radiation. But, this will
ultimately lead to the generation of the resonance radia-
tion. Conventional perturbation methods will fail to de-
scribe the interaction process properly, at least beyond a
certain strength of TOD.

Very recently, it was proposed to use the emitted reso-
nance radiation to mediate the interaction between an ar-
ray of solitons which may eventually form a stable bound
state [44]. These solitons can then be stably pinned by
their common radiation field provided that their separa-
tion exceeds a critical value. These results remain to be
double-checked by numerical methods.

Other authors [45] claim that the main reason for the
appearance of resonance radiation is the absence of sym-
metry in a “one-hump” solution. They found a “double-
hump” solution that forms a bound state without emit-
ting radiation. Until now there is no evidence that this
solution can be excited and that it propagates stably.

The aim of the present paper is twofold. Firstly, we in-
tend to identify the influence of both weak and strong
TOD on the soliton interaction where particular em-
phasis is paid to the analysis of the radiation generated.
Furthermore, we demonstrate how phase modulation and
bandwidth-limited amplification can be used to stabilize
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amplitudes and positions for weak and strong TOD, re-
spectively. We show the case of N-soliton interaction
which is identified to be fundamentally different from the
two-soliton case. Secondly, we intend to show that the
Karpman-Solov’ev approach proves as a reasonable, ver-
satile and powerful tool to describe two-soliton interac-
tion in the presence of TOD. It yields the famous decay
of the bound state and allows the straightforward in-
clusion of various initial conditions as, e.g., pulse separa-
tion and phase difference, and perturbations as, e.g.,
bandwidth-limited amplification (BLA) and phase modu-
lation. Moreover, we are identifying the limits of its ap-
plicability with increasing TOD.

The paper is organized as follows: After a concise
mathematical formulation of the problem we study the
soliton interaction in the presence of TOD in Sec. IT and
its reduction by a proper phase modulation in Sec. III.
The combined effect of TOD and BLA on the interaction
process is investigated in Sec. IV where the role of the
resonance radiation is investigated in detail. In the case
of N-soliton interaction we have to rely on pure numeri-
cal studies. In the Appendix we discuss the limits of ap-

plicability of the perturbation approach.

II. THIRD-ORDER DISPERSION
AND SOLITON INTERACTION

The evolution of the normalized pulse envelope W(z,t)
in an optical fiber may be described by the perturbed non-
linear Schrodinger equation

OV |, 1 3% o O

i5, > a2 +|¥Pw=iy PYE
where R stands for any perturbation (except TOD) as,
e.g., loss, bandwidth-limited amplification, phase modula-
tion and filtering, and is set in this section to zero and
specified later on. The normalized time in the moving
frame of the pulse ¢ and the distance z are related to the
variables T and Z as

k T—k,Z
bl,_z o _T7kZ
Ty Z, T,

+R({¥}), (1

z , (2)

where T, can be related to the pulse length (Tgwpm)
by Tepwam=1.76Ty, Z, is the dispersion length,
k,=0k/ aw|% the inverse group velocity of the pulse and
k,=3% / 8m2|w0 the group velocity dispersion at the
mean frequency. The normalized envelope ¥ is related to
the slowly varying envelope A4 (z,t) of the fiber mode as
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where n, and 4. are the nonlinear coefficient and the
effective core area of the fiber, respectively. The strength
of TOD is reflected by the normalized quantity
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v one can use an approximate formula {7], that holds for
a standard fiber, and obtains for a 1 ps pulse full width
at half maximum (FWHM) and a wavelength offset
AA=0.005 ym from ZDW a TOD of y=0.05 being
slightly above the threshold for the generation of reso-
nance radiation (y =0.045 [14]).

Our first aim consists in studying the interaction of sol-
itons when only TOD is present. Because (1) is not inte-
grable we have to use perturbation approaches or numer-
ical methods as the beam propagation method (BPM) to
find the respective solitary wave solutions. As far as the
numerical solution is concerned we have used a standard
split-step fast Fourier transform BPM [46]. There are
various powerful perturbation approaches which rely on
different assumptions and have their particular merits
and disadvantages. The well-established variational ap-
proach is very versatile because it allows for the inclusion
of independent amplitudes and widths as well as a chirp
acquired during the propagation. But this approach is re-
stricted to perturbation R ({y}) that are Hamiltonian
and allow for the introduction of an Lagrangian. Be-
cause this is not the case for very prominent perturba-
tions as, e.g., losses and bandwidth-limited amplification
we use here the Karpman-Solov’ev approach. Only very
recently this approach was applied to study the effect of
TOD on soliton propagation and interaction [39]. The
main idea of KSA is to choose a superposition of
Schrodinger solitons as a trial function and to derive or-
dinary differential equations for the soliton parameters
which are driven by the interaction as well as the pertur-
bation terms. The two-soliton trial function may be writ-
ten as

2
Y(z,t)= 3, 2v,sech[2v,(t —&,)]

n=1
Xexpf{i[2u,(t —€,)+8,1} , (5)

where 2v;, 2u;, &;, and 8;, i =1,2 are the amplitudes, fre-
quencies, positions and phases of the pulses, respectively.
It is evident from (5) that all processes that are generating
radiation (dispersive waves) and change the pulse shape
are not accurately described by KSA. Because it is well
known that TOD may do both [7,14] the limits of appli-
cability of KSA have to be checked very carefully (see the
Appendix). Following the procedure outlined in [43] we
end up with the system of differential equations for the
pulse parameters as

du,

—L=(—1)"161° exp(—2vr)cos® , (6)
dz

D (11697 exp in®

= v’ exp(—2vr) sin® , 7
dé,

i =2u, +4vexp(—2vr)sin®+4y(v2 +3u2) , (8)
3, 2.4 .2

e =2(v; +p, )+ 8vexp(—2vr)(usin®+3v cosd)

+16yp, (u% —v2), 9)

where v=(v,+v,)/2, p=(u,+u,)/2, r=£—E&,

¥=§,—8;, and ®=2ur+W¥. In deriving (6)-(9) it had to
be assumed that the fluctuations in the amplitudes and
velocities are small with respect to their averaged values
(|, —p,l <<p, |vy—v,| <<v) and the separation of the
two pulses is not too small (vr >>1). It is evident from
(6) and (7) that the averaged amplitude and velocity are
conserved quantities. Moreover, Eq. (8) reflects that the
solitons acquire a velocity due to TOD.

In order to make sure that the results derived by using
the system (6)—(9) are reliable we have solved that system
for various situations and double-checked the results by
using the BPM. Details are presented in the Appendix.
The conclusion that we can draw from these studies is
that the perturbation approach may be applied for fairly
large initial separations [r(0) = 8, corresponding to about
4.5 pulse widths] and TOD coefficients ¥ <0.0S, being
slightly beyond the threshold where resonance radiation
is generated. Within these limits the agreement becomes
almost perfect if the pulses are initially out of phase by 7.

Figure 1 shows that the soliton bound state decay [20],
caused by TOD as a nonsymmetric perturbation, can be
reasonably described by using KSA. Both the evolution
of the positions and the amplitudes follow closely the
BPM results except at the point where the separation is
smallest and the assumptions made to derive the KSA
equations are violated. Note that the different ampli-
tudes of the single solitons emerging eventually are very
close to those derived by the inverse scattering transform
[20]. Very early it was proposed to exploit just that TOD
triggered effect to avoid the coalescence of two in-phase
solitons. Unfortunately, this concept cannot be extended
towards N-soliton interaction. The BPM calculations re-
veal (see Fig. 2) that initially the behavior is similar to the
two-soliton case and can be interpreted as the decay of
the N-soliton bound state. Depending on the different ve-
locities acquired the pulses continue to separate [Fig.
3(a)] or coalesce after some propagation distance [Fig.
3(b)]. Hence, we may conclude that TOD does not suffice
to stabilize a multisoliton train.

Until now we dealt with situations where the TOD pa-
rameter was only slightly above the threshold value
(y=0.045) for the generation of resonance radiation. It
might be interesting to investigate the case where that pa-
rameter is considerably larger, although one should keep
in mind that, e.g., ¥ =0.2 would require 250 fs pulses for
a deviation of 5 nm from the ZDW. The numerical simu-
lation shown in Fig. 4 displays both the decay of the
bound state, where the pulses acquire different group ve-
locities and amplitudes [see also Fig. 5(a)], and the fairly
strong emission of radiation. Following the idea of Wen
and Chi for the single pulse propagation [14] we analyze
the spectrum of the interacting pulses, the shape of which
is shown in Figs. 5(a) at z =8xr. In Fig. 5(b) the complete
spectrum is displayed where the strong peak of the reso-
nance radiation (g, ) can clearly be identified. Moreover,
we have studied the spectral content appearing in
different time slots, shown in Figs. 5(c)—(e). It is clearly
seen that the component in front of the leading edge of
the first pulse (g,) radiates with two frequencies where
one of them is close to Q=0 [Q=(w—wy)T,] [see Fig.
5(c)]. Behind the trailing edge the radiation contains the
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strong resonance contribution emitted from both pulses
and a weak part (g, ) slightly below Q=0 [see Fig. 5(d)].
The time slot covering the region where the two pulses
are situated contains a small contribution of the reso-
nance radiation stemming exclusively from the leading
pulse Fig. 5(e). By using the dispersion relation of the
linear radiation
2
Klin=_%‘+'yﬂ3 , (10)
we find the deviation Ay, from the normalized inverse
group velocity, being proportional to k; [see (1)], to be

(11)

On the other hand, it was shown that the change in the
inverse group velocity of the soliton A; beyond the first-
order approximation is [38]
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FIG. 1. Decay of the two-soliton bound state-BPM versus
perturbation approach ¥ =0.05 (moderate TOD); initial separa-
tion r(0)=26.5; solid line—BPM; dotted line—perturbation ap-
proach. Unless otherwise specified the modulus |¥| of the am-
plitude is shown in all figures. We have used dimensionless
quantities, introduced in the text, in all figures. (a) Evolution of
frequencies u;, i =1,2; (b) evolution of the positions &;, i =1,2;
and (c) evolution of the amplitudes 2v,, i =1,2 as a function of
the distance.
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FIG. 2. Similarity between the decay of the (a) two-soliton
and (b) multisoliton bound state; ¥ =0.05 (moderate TOD), ini-
tial separation »(0)=6.

oK,

Asol= a;;l :7/+127/3 . (12)

Equation (11) implies that the radiation contributions g,

and g, are almost stationary. Thus, both separate in time
from the soliton [see (12)].

The frequency shift of the dominant resonance radia-

tion ¢, is given by the matching of the NLSE soliton

and the radiation wave vector and amounts to
Q,=1/2y +2y(2v)* [16]. By using (11) we get
SO 1 v o) (13)
r aQ n’r 41/ ’V 1’ .

Hence, this radiation always propagates in the wake of
the soliton that generates it. Moreover, by using (12) and
(13) it is very easy to show that the larger the TOD the
smaller the group velocity difference between soliton and
radiation. On the other hand, the frequency shift, also
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FIG. 3. Decay scenarios of the three-soliton bound state for
different initial separations; ¥y =0.05 (moderate TOD); (a)
r(0)=6—continuous separation; (b) r(0)==8—initial separa-
tion of subsequent coalescence.
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FIG. 4. Two-soliton interaction and the emission of reso-
nance radiation for large TOD (y =0.2); initial pulse separation
r(0)=8.
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FIG. 5. Envelope and spectrum of two interacting pulses as
well as the dispersive waves at z =8 and with ¥y =0.2: (a) en-
velope [¥]; (b) spectrum of the entire field shown in (a); (c) spec-
trum of the dispersive waves in front of the leading edge
(¢ =0.4); (d) spectrum of the dispersive waves behind the trail-
ing edge (¢ > 19.4); (e) spectrum of the pulses and the dispersive
waves in between them (0.4 <t <19.4).

seen in Fig. 5(b), 5(d), and 5(e) implies that, at least, the
resonance radiation might be removed by appropriate
filtering. We will come back to this issue in Sec. IV. The
dominant role of the resonance radiation is displayed in
Fig. 6 where the relative energy of the different radiation
components is shown for strong TOD not considered in
[14]. It is worth noting that until very recently particular
emphasis is paid to the detailed study of the resonance ra-
diation [12-17]. Very recently, a complete analytical
description of the different parts of the emitted radiation
was given by Elgin, Brabec, and Kelly [17].

Due to the appearance of dispersive waves it is no
surprise that there is an appreciable discrepancy between
the numerical and the KSA results. This is shown in Fig.
7 for the evolution of the pulse separation. One might be
inclined to attribute this discrepancy exclusively to the
improper trial function chosen but it will turn out later
that regardless of the radiation the inclusion of higher or-
der perturbation terms might be required [47].

At this point it is interesting to discuss in more detail
the idea of the TOD-mediated soliton bound states put
forward in [44,45]. Provided that we launched two
NLSE solitons to the fiber we found no numerical evi-
dence that the radiationless ‘“‘two-hump solution” [45]
evolves, neither for a weak nor for a strong TOD. On the
contrary Malomed’s idea [44] relies on the emission of ra-
diation. Hence, one would expect these bound states to
appear only beyond the threshold of resonance radiation,
i.e., for strong TOD. He assumed that the solitons riding
on top of a common radiation “‘substrate” are affected by
an effective pinning potential. A bound state can then be
formed when the pinning is stronger than the mutual at-
traction caused by the interaction forces. The separation
between the bound solitons may take an arbitrary value
larger than a critical one, at which the attraction forces
are equal. This critical separation was estimated to be
r(0),~m/2y [44] corresponding approximately to the
separation used in Fig. 4. Two assumptions have been
made to derive the critical distance for the bound state to
exist, namely, that the interaction potential is not affected
by TOD and that both pulses are affected by a common
“substrate.” The former is certainly violated, but prob-
ably not very critical. As for the second one, it can be
clearly identified in inspecting Figs. 4 and 5 that the reso-
nance radiation is asymmetric, always situated behind the

0.12
A

7] e
£ 008} e
151
& -
@ =
S 004}
[83]

FIG. 6. Ratio of the energies of the different dispersive waves
to the initial soliton energy as a function of TOD(y ) for a single
pulse; z =87; g, (dashed), g, (dotted), and g, (solid).
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FIG. 7. Evolution of the positions of both pulses as a func-
tion of the propagation distance: initial parameters: r(0)=38;
v;=0.5; u;=0, i=1,2; y=0.2 (strong TOD) dashed line—
KSA; solid line— BPM.

trailing edge of the pulses [see (12)]. Hence, the leading
pulse is not affected by the same radiation substrate as
the trailing pulse. In order to clarify the situation we
performed a numerical experiment. In Fig. 8(a) the prop-
agation of two pulses in the presence of TOD is seen.
Obviously, no bound state is formed because of the ab-
sence of radiation in front of the leading pulse. This radi-
ation can be artificially generated if we decrease the time
window and use periodic boundary conditions. Figure
8(b) displays this situation. There is some evidence that
such a common substrate is formed and that the pulses
are stuck together. Hence, we conclude that the predic-
tion of a bound state of two pulses to appear cannot be
expected in a realistic experiment, but the situation ap-
pears differently if a train of pulses on a soliton ring laser
is concerned. Then, the common substrate might exist
for all pulses except the leading one.

III. THIRD-ORDER DISPERSION
AND PHASE MODULATION

One of the results of the preceding section was that a
weak TOD can only prevent the coalescence of two soli-

Distance z

20 40 40 20 0
Time t

40 20 0
Time t

20 40

FIG. 8. Numerical experiment: artificial creation of a “com-
mon” radiation substrate by decreasing the “time window” in
(b); no absorbers were used. Here, the intensity is shown and
the parameters are r(0)=8 and y=0.2. (a) time window
t =1024; (b) time window ¢ =90.

tons, but generally not that of N solitons. Moreover, be-
cause the pulses acquire different velocities it is not possi-
ble to stabilize their positions. But, just this would be the
ultimate goal in a transmission link in order to increase
the capacity and the reliability of the information
transmitted. In recent papers [35,36] it was shown, but
without TOD, that a phase modulation applied to the
pulse train can stabilize the positions of the individual
pulses. The idea is close to that just discussed, namely,
the introduction of a periodic potential that may capture
the pulses. But here this potential stems from the distri-
buted action of periodically aligned phase modulators. If
their spacing distances are much less than the dispersion
length their action can be described in adding an pertur-
bation term [35]

R ({¥})=acos(Q)¥ , (14)

where a and O are the corresponding normalized ampli-
tude and frequency of the modulation, respectively. Be-
cause the velocity created by TOD gives the pulses some
“kinetic” energy the potential is expected to need some
critical modulation depth. Moreover, one can anticipate
that the pinning effect of the potential may be eventually
that strong that some critical initial separation, that was
r(0)=38 in the previous investigations, can be reduced.
Evidently, the modulation frequency should match to the
initial separation. We start with the two-soliton case to
understand the underlying physics and proceed then with
the N-soliton case. Taking into account (14) the KSA
Egs. (6) and (9) for the frequencies and phases change to

du, 3
——=(—1)"16v° exp( —2vr) cosP
dz
06, sin(QE,)
S Soa 15
T 2  sinh©, (13)
ds, _
7 =2(v2 +u2)+8vexp( —2vr)(p sin® +3v cos®P)
zZ
1671, (12 =2 )— a©? cos(DE, ) cosh©,
TVp )T a0, cosliig, ) o
Vi (1, " Snh’0,
(16)

where ©, =7Q /4v,,.

As can be seen from (15) phase modulation affects ex-
plicitly the frequency which in turn acts on the position
via (8), thus competing with TOD. Hence we may expect
that for a fixed TOD a minimal amplitude of phase
modulation a,;, can be derived being necessary to stabi-
lize both the amplitudes and the positions of two interact-
ing pulses. In what follows we assume that the initial
separation is very small [#(0)=6] and determine the
minimal amplitude for varying TOD. Moreover, we
study the situations where the pulses initially launched to
the fiber are in phase [¥(0)=0] or out of phase
[W(0)=m]. We use both the KSA and the numerical ap-
proach. The criteria for the permitted fluctuations of the
separation as well as the relative amplitudes are set to
|Ar| <0.5 and |v;—v,/v|<a, respectively, where a
varies for different situations. For in-phase pulses we
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have set @ =0.3 because the KSA yields fairly large fluc-
tuations whereas for out-of-phase pulses it can be reduced
to @ =0.1. The results are shown in Fig. 9 where the
propagation distance was z =507. It is evident that the
minimal amplitude of phase modulation has to be larger
for in-phase pulses. Moreover, the agreement between
the results provided by the perturbation and the numeri-
cal approach is much better for out-of-phase pulses be-
cause the pulse shapes are fairly well conserved in this
case. As it could be anticipated the minimal amplitude
has to increase with third-order dispersion because the
induced potential has to prevail against the velocity
caused by TOD. Although the initial separation is very
small the perturbation approach yields reasonable results
for out-of-phase solitons. For in-phase pulses consider-
able changes of the pulse shapes allow merely for a quali-
tative agreement.

Eventually, we use the results obtained for the two-
soliton interaction as a basis to study the evolution of a
multisoliton train numerically. We have simulated the
cases where the train consists of three and four pulses
and the initial separation was r(0)=6 or 8 As a
representative example we present here the results for the
4-pulse-train with 7 (0)=6. We assume that TOD is weak
and no appreciable resonance radiation is created. Suc-
cessively, we investigate the mere effect of TOD, then add
an initial phase shift of 7 between adjacent pulses, apply
only phase modulation and eventually combine all effects.
The respective results are depicted in Fig. 10(a)-10(d). It
is obvious from Fig. 10(a) that similarly to the two-soliton
case the N-soliton bound state decays where the positions
change during the propagation. For out-of-phase pulses it
can be recognized that the pulse shapes and amplitudes
are almost conserved, but a walkoff is left [see Fig. 10(b)].
In both situations TOD prevents pulse collision, but de-
creases the capacity of the channel due to the walkoff. If
we add phase modulation with an appropriate amplitude
(see Fig. 9) and a matched frequency [Q=27/r(0)] a
clear stabilization can be identified. Note, that for in-
phase pulses the modulation amplitude has to be larger
and a minor fluctuation of the pulse amplitudes is left [see
Fig. 10(c)]. For out-of-phase solitons a substantial stabili-
zation of both the amplitudes and positions can be clearly

0.20

0.154

Olmin

0.10 ¢

0.05F

FIG. 9. Minimal amplitude of phase modulation a,,;, versus
TOD (y) for r(0)=6; in-phase pulses: solid line—BPM;
dashed line—KSA; out-of-phase pulses: dotted line—BPM;
dash-dotted line—KSA.
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FIG. 10. Effect of phase modulation on multisoliton interac-
tion for moderate TOD (y=0.05) and small initial separation
[r(0)=6]. (a) Decay of the bound state for in-phase [¥(0)=0]
pulses and a=0; (b) repulsion of out-of-phase [¥(0)=7] pulses
and a=0; stabilization of the amplitudes; (c) partial stabiliza-
tion of the positions and amplitudes of in-phase pulses by phase
modulation: a=0.12; Q=1/3; (d) suppression of interaction
and stabilization of both the amplitudes and the positions of
out-of-phase pulses by phase modulation: ¢=0.08; Q=m/3.

recognized from Fig. 10(d).

We may conclude that phase modulation is an ap-
propriate tool to overcome the detrimental effects of soli-
ton interaction and TOD below the threshold for the gen-
eration of resonance radiation. Moreover, the idea to ex-
ploit a periodic potential to capture the solitons [35]
works at least for the case of a deterministic potential not
caused by resonant radiation.

IV. THIRD-ORDER DISPERSION
AND BANDWIDTH-LIMITED AMPLIFICATION

In long-haul transmission lines solitons need to be
periodically amplified after typical distances of 30—40 km
to compensate for the absorption losses. Nowadays this is
routinely achieved in wusing lumped erbium-doped
amplifiers [48]. In first-order approximation these
amplifiers may be described by an inverted two-level sys-
tem which has a finite bandwidth. It has been shown that
so-called ““‘averaged solitons” may propagate provided
that the amplifier spacing (Z,) is much less than the
dispersion length (Z,) and the gain and bandwidth have
a definite relation [49-53]. Note, that these ‘“‘averaged
solitons” are asymptotically unstable for very large dis-
tances because of the unavoidable interaction with the
amplified radiation. Moreover, it was proposed to em-
ploy this bandwidth-limited amplification (BLA) to
reduce the noise-induced temporal jitter (Gordon-Haus
jitter) [54,55] and the soliton-soliton interaction [27,28].
With regard to the latter issue it has been shown that the
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improvement is only marginal as long as the bandwidth is
large [27,28,42]. Decreasing the bandwidth requires an
increase of the gain which leads to the so-called soliton
instability due to the strong amplification of the low fre-
quency radiation generated by the amplifiers [30,42].
Generally BLA causes two major effects in the frequency
domain. It cuts high-frequency radiation [56] and it pulls
back the soliton frequency to the center of the filter curve
[28]. In view of TOD-triggered effects as, e.g., the gen-
eration of different kinds of radiation and the decay of
the soliton-bound state it is worthwhile to have a fresh
look at BLA. In particular, possible implications with re-
gard to the soliton interaction may attract some interest.

The transfer function 7'(Q) of the lumped amplifiers
may be written as

T(Q)=-20C) 17
l+2i£
B

where we have assumed that the center frequency of the
amplifier coincides with the mean frequency w, of the
pulses. We have then Q=(0—w()T, and B=0w,T,
where B and o are the normalized and the real amplifier
bandwidth, respectively, and exp(G) is the amplification
at the center frequency. It has been shown that the
lumped amplification process can be reasonably described
by the distributed transfer function [27]

H=0BTW] _G 1, 15152
z, z, 2z, B
o .8 o
=~ —2 —_ [ —
G/z, tha ZBzza +13 B,
(18)

provided that z,=Z,/Z,<<1. With a; and I'=a,Z,/2
as the real and the normalized fiber loss coefficient, re-
spectively, we may define a transfer function H,(Q)
which accounts for the combined effect of distributed loss
and amplification as

H (Q)=8—iAQ—BQ*+iy  Q° . (19)

Here, the net gain §, the shift in the inverse group veloci-
ty A, the gain dispersion 3 and the third-order dispersion
Y r» caused by the finite amplifier bandwidth, are given by

G 2 2
8:——1“ , = R = s
z, A Bz, A Bz,
g (20)
= =2 2 3 .
Yf 3B3Za 3V ﬁ Zq

By taking into account (19) the evolution of the pulse
envelope u(z,t) in a lossy fiber link with lumped
amplifiers and z, <<1 may now be described by the aver-
aged perturbed nonlinear Schrodinger equation [38]

Qu , 1 d%u

i—+

0z 2 92 2’

d’u %*u

+lulPu =iy — +idu +iBp—-, (1)
|u Y op B,
where A was removed by a Galilei transformation and y
reflects the TOD caused by the fiber and the filter
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(y +7,—7). The envelope u(x,t) is related to W(z,t)
[see (1)] by
12

2I'z,
exp(—T'Z)u(z,t), (22)

W(z,t)= [t
(z,0) 1—exp(—2Iz,)

where Z is the distance in one amplifier span [53].

It has been shown that “averaged solitons” may exist
provided that =38 [55]. In what follows we always use
this condition. Moreover, for a fairly strong filter
(B=0.15) and z,=0.1 we can estimate the bandwidth-
caused TOD to be y,~0.017 being well below the
threshold for the resonance radiation and much less than
the fiber TOD near the zero-dispersion wavelength. Nev-
ertheless, it shows that far from the ZDW filter-induced
TOD may have some influence on the soliton propaga-
tion.

Because we are going to use the KSA below we have to
specify the perturbation R that reads now as

%u

ar’

where the trial function (5) holds now likewise for u.
Equations (8) and (9) remain unaltered whereas we get

instead of (6) and (7) for the frequencies and the ampli-
tudes

R({u})=idu +ip (23)

dpy 3 2
iz =(—1)"16v’ exp(—2vr) cos®— L Bu,v, , (24)
dv, 3 .
=(—1)"16v’ exp( —2vr) sin®
dz
Vi
+28v, —8Bv, T+,u3, (25)

We are now in the position to study the combined
effect of TOD and BLA on the two-soliton interaction
numerically by solving (21) or by the Karpman-Solov’ev
perturbation approach using (8), (9), (24) and (25).

As mentioned in Sec. II TOD causes a decay of the sol-
iton bound state where two solitons with opposite fre-
quencies, and hence velocities, are left. This decay is ad-
vantageous for the two-soliton case because it prevents
the coalescence of the pulses, but it is harmful for the N-
soliton case in a transmission link because the soliton
separate with distance and the capacity of the channel de-
creases. Recently, it was proposed to combine TOD and
BLA [38,39].. The TOD induced frequency splitting may
be exploited to prevent the collision in the first stage of
propagation. Subsequently, the frequency splitting and
the resulting pulse repulsion (see Fig. 2) may be
suppressed by exploiting BLA which pulls the center fre-
quency back to the center of the amplifier bandwidth
(Q2=0) [38]. However, the effect of BLA on the soliton
propagation and interaction, if TOD is strong, has not
been fully explained, to our knowledge.

In what follows we try to understand how BLA can
affect the soliton propagation and interaction by manipu-
lating the spectrum. In Sec. II we have shown that one
prominent effect of a large TOD is the continuous gen-
eration of resonance radiation. This radiation has two im-
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portant properties, namely, its frequency is offset from
the soliton frequency inversely proportional to the TOD
and its group velocity is close to that of the soliton. Thus,
the conclusion is that one cannot separate this radiation
from the soliton in time, but one has to cut it in the fre-
quency domain. So, the question arises how this radiation
is affected by BLA. Equation (19) tells us that two fre-
quency domains exist. Frequency components with
|Q| < Q, are amplified whereas those with |Q|>Q, are
attenuated. The frequency €Q,>0 1is given by
Re[Hf(.Qo)]=8—BQ(2,=O resulting in Q3=8/B or Q3=1
if we use the condition B=38. It is interesting that this
frequency depends only on the net gain-bandwidth prod-
uct rather than on the bandwidth directly. On the other
hand, the resonance radiation has the frequency
Q,=1/2y, at least to the first order being sufficient here.
Thus, the resonance radiation gets absorbed provided
that ¥ <V'3/2~0.866 always being the case for realistic
situations. This result is interesting because it implies
that regardless of the bandwidth (at least for 3=38) the
detrimental resonance radiation caused by TOD suffers
an absorption due to the gain dispersion. This effect is
displayed in Fig. 11. It can clearly be recognized that the
resonance radiation generated by a fairly strong TOD
(y=0.2) is cut by the bandwidth-limited amplifiers re-
gardless of the filter strength [8=0.15 in Fig. 11(b) and
B=0.03 in Fig. 11(c)]. Of course, the strength of the ab-
sorption is proportional to the amplifier strength, as can
be seen in Fig. 11, too. This behavior should have some
positive implications for the soliton interaction. Note,
however, that only the strong resonance radiation is cut
completely but not the low frequency radiation caused by
TOD. In Fig. 12 the evolution of two interacting pulses
is shown. It is evident that the resonance radiation disap-
pears and the positions of the pulses get stabilized provid-
ed that BLA acts [compare Fig. 4 with Figs. 12(a) and
12(b)]. But, it is clearly seen that strong amplifiers (large
net gain, small bandwidth) strongly amplify the low-
frequency radiation generated by TOD and the
amplifiers. This is also displayed in Fig. 13 where the
spectra of the different time slots are plotted (similarly as
in Fig. 5 without BLA). A comparison with Fig. 5 shows
both the cutting of the resonance radiation [see Fig.
13(a), 13(b), 13(d), and 13(e)], the attenuation of g, [see

Distance z

FIG. 11. Absorption of the resonance radiation by
bandwidth-limited amplifiers; ¥y =0.2. (a) Without BLA; (b)
with moderate BLA (§=0.03,8=0.09); (c) with strong BLA
(6=0.05,8=0.15).
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FIG. 12. Interaction of two solitons with large TOD
(y=0.2) and BLA: (a) weak BLA (5=0.01,8=0.03); partial
stabilization of the positions as well as absorption of the reso-
nance radiation; no amplification of low-frequency radiation; (b)
moderate BLA (§=0.03,8=0.09); stabilization of positions and
absorption of the resonance radiation; moderate amplification
of low-frequency radiation; (c) strong BLA (§=0.05,8=0.15);
stabilization of positions, but strong amplification of low-
frequency radiation; evolving soliton instability.
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FIG. 13. Effect of BLA on the envelope and spectrum of two
interacting pulses as well as of the dispersive waves at z =8
and with y=0.2 and 8=0.05,8=0.15. (a) Envelope |¥|; (b)
spectrum of the entire field shown in (a); absorption of the reso-
nance radiation; (¢) amplification of the low- and absorption of
the high-frequency part of the spectrum of the dispersive waves
in front of the leading edge (¢ <0.4); (d) partial absorption of
the spectrum of the dispersive waves behind the trailing edge
(t = 19.4); absorption of the resonance radiation; (e) spectrum of
the pulses and the dispersive waves in between them
(0.4 <t <19.4); absorption of the resonance radiation.
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Fig. 13(d)] and the high-frequency parts of g, and the
amplification of the low-frequency part of g, [see Fig.
13(c)]. Although the amplified low-frequency radiation
separates from the solitons in time [see Fig. 12(a)] this ra-
diation is detrimental as far as the N-soliton case is con-
cerned rather than the two-soliton one. Because we have
shown that the filtering effect survives even if we decrease
dramatically the amplifier strength one solution could
consist in the reduction of that amplifier strength. But
this, in turn, has some negative implications on the
suppression of the frequency splitting [see Fig. 12(a)].
Hence, for a too weak amplifier the pulses would
separate. Thus, one has to look for a compromise. If we
use a moderate amplifier strength we can almost prevent
the amplification of the low-frequency radiation as well as
the separation of the pulses as shown in Fig. 12(b). If this
is not feasible in transmission links, because this would
entail a reduction of the amplifier spacing, one can imag-
ine that this low frequency radiation might be absorbed
by using sliding filters [29] with a negative sliding rate, by
replacing the linear gain partially by a nonlinear one [30]
or by using nonlinear amplifying loop mirrors [57].

It was shown that sliding filters can cut the low-
frequency radiation caused by the amplifiers [29]. Be-
cause the low-frequency radiation generated by TOD can
hardly be distinguished from that radiation it should be
absorbed likewise. The same applies for the nonlinear
gain where the large amplitude components are preferred
in the amplification process.

Moreover, as mentioned in Sec. II, the Karpman-
Solov’ev perturbation approach fails if TOD gets strong
and the resonance radiation comes into the play. Follow-
ing this argument its applicability should considerably
improve when that radiation disappears. So, it should be
reasonable to describe the combined action of TOD and
BLA with the KSA even when TOD is strong [39]. In
fact, it can be shown that the stabilization of the separa-
tion of the pulses can be properly described (see Fig. 14

50 T T T T

30 }

Positions &,

-10 L L L L
0 20 40 60 80 100

Distance z

FIG. 14. Evolution of the positions of both pulses for
different amplifier strengths—BPM vs KSA. Parameters:
r(0)=8; v;—0.5; u;=0, i=1,2; y=0.2. Moderate BLA
(6=0.03,8=0.09): dashed line—BPM; solid line—KSA.
Strong BLA (8=0.05,8=0.15): dotted line—BPM; dash-
dotted line—KSA.
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and compare with Fig. 7) by that perturbation approach.
But in comparing the results with the numerical calcula-
tions it turns out that the absolute position of the pulses
differs. This is not astonishing because KSA yields a ve-
locity proportional to y whereas it has been shown [38]
that for strong TOD higher-order terms have to be taken
into account [see (12)]. So, the conclusion is that KSA
may be used to describe qualitatively correct the interac-
tion of solitons for strong TOD provided that a moderate
BLA acts and the amplification of the low-frequency ra-
diation does not lead to soliton instability. This is due to
the fairly good conservation of the pulse shapes and the
absorption of the resonance radiation improving the reli-
ability of the trial function (5). The quantitative correct
description would require higher-order perturbation ap-
proaches as proposed by Elgin [47].

Eventually, we may conclude that even weak BLA may
considerably improve the stability of the positions and
the amplitudes of the solitons by pulling back the fre-
quencies of the pulses to the center of the amplifier gain
curve and by cutting the detrimental resonance radiation
caused by strong TOD.

V. CONCLUSIONS

In this paper we have investigated the soliton interac-
tion near the zero-dispersion wavelength. Particular em-
phasis was paid to the influence of the various radiation
contributions being generated continuously by a TOD. It
was shown that a TOD does not suffice to prevent the
coalescence of N solitons. As far as TOD is weak (no res-
onance radiation) the positions and the amplitudes of sol-
itons in a train can be stabilized by applying a proper
phase modulation where we have derived the critical
modulation amplitudes to achieve this effect. For a
strong TOD where the resonance radiation may destroy
the pulses bandwidth-limited amplification can be used to
absorb this detrimental radiation. We have shown that
this effect does only depend on the net gain-bandwidth
product rather than on the bandwidth directly. Thus, the
resonance radiation may be cut by very weak amplifiers
provided that TOD attains realistic values (y <V'3/2).
This effect of BLA may be used to stabilize the positions
and the amplitudes of interacting solitons by pulling back
the frequencies and cutting the resonance radiation.
Moreover, the amplifier strength may be reduced to avoid
the amplification of low-frequency radiation generated by
the amplifiers and TOD. Although this radiation
separates in time from the soliton as far as the two-
soliton case is concerned it is detrimental in the N-soliton
case. Eventually, the limits of applicability of a perturba-
tion approach were identified near the zero-dispersion
wavelength.
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APPENDIX: LIMITS OF APPLICABILITY
OF THE PERTURBATION APPROACH

When TOD is taken into account the modified non-
linear Schrodinger Eq. (1) (with R =0) loses its integrabil-
ity. Hence, one has to resort to numerical methods, as
the beam propagation method (BPM) or to perturbation
approaches where the Karpman-Solov’ev approach
(KSA) [43] [see (5)-(9)] represents a very versatile and
powerful variant. The main assumptions made to derive
the relevant ordinary differential Eqgs. (6)-(9) are as fol-
lows.

(a) Dispersive radiation can be neglected.

(b) The solitons keep their sech shape with the fixed re-
lation between width and amplitude.

(c) The relative fluctuations in the amplitudes and the
velocities are small.

(d) The separation between the pulse are not too small.

The essential parameters that can be varied are the
strength of the TOD (y), the initial separation [#(0)] and
the initial phase difference [8(0)] where the interest is fo-
cused on in-phase [8(0)=0] and out-of-phase [8(0)=17]
pulses. The aim is to identify conditions where KSA
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FIG. 15. Shapes of both interacting pulses at the point of
minimum separation if TOD is moderate (y=0.05): (a)
r(0)=6; (b) r(0)=8.
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FIG. 16. KSA vs BPM. Evolution of the positions (a) as well
as the amplitudes (b) of two in-phase pulses for moderate
TOD(y =0.05) and moderate initial separation [7(0)=8]: solid
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FIG. 17. KSA vs BPM. Evolution of the positions (a) as well
as the amplitudes (b) of two out-of-phase pulses for moderate
TOD (y=0.05) and moderate initial separation [r(0)=8]:
solid lines—BPM; dashed lines—KSA.
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works properly provided that TOD comes into the play.
To this end we have compared the results of several BPM
runs with the assumptions and the results provided by
solving (6)—(9).
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Assumption (a) requires that we are below or close to
the threshold of resonance radiation, hence, we conclude
that ¥ =0.05 and restrict essentially to that case.

Then, we have changed the initial separation. In Fig.
15 the pulse shapes after a certain propagation distance
are plotted for two typical examples. We may conclude
that assumption (b) and (c) are violated for r(0)=6, but
fairly well fulfilled for »(0)=8. Thus, a good estimation
for the minimal separation should be for r(0) = 8. This is
confirmed by Fig. 16 where we have plotted the fluctua-
tions of the amplitudes and the positions as they result
from BPM and KSA. The agreement is rather good as
far as one is not at the position where the separation gets
minimal. In Fig. 17 the evolution of the positions and the
amplitudes is shown if one uses out-of-phase pulses
[6(0)=m]. A perfect agreement can be recognized. To
complete our studies we have checked whether we can in-
crease the TOD even beyond the threshold of resonance
radiation for out-of-phase pulses. The result is shown in
Fig. 18. Obviously, both the resonance radiation as well
as higher-order perturbation terms that have not been
taken into account prevent a better agreement. That
higher-order term might play an important role was al-
ready identified in inspecting Fig. 14 where the resonance
radiation was cut by BLA.

Eventually, we can state that the Karpman-Solov’ev
approach may be used to describe the two-soliton interac-
tion near the zero-dispersion wavelength provided that
the TOD is not too strong (y =0.05) and the separation
is not too small [ (0) = 8] for any initial phase difference.
Matching both conditions the agreement is almost per-
fect if out-of-phase pulses are used.
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